Albert Gural

6/1/09

Robot Construction Manual (TJ Robotics Competition)
Personal Reflection

I really enjoyed the robot competition, both in the creation of the robot and in the competition. I also enjoyed winning in the IBET and going on to the final competition. In terms of the construction process, I liked that we were allowed to design our robots with Auto CAD and that we were given most of the parts necessary. I also liked building the PICAXE board, although I would have preferred it to use surface mount parts and a PIC or AVR MCU instead of the PICAXE, since it might have allowed for a more in-depth understanding of how a microcontroller works, and it would have been cool to program in assembly or C (there are also compilers that allow PIC and AVR chips to be programmed in BASIC).
There were also a few things I didn’t like about the process. In the construction of the robot, I would have liked to be able to use the CAD drawing to get the laser printer to cut out the pieces, instead of having to hand-cut them using the band saw (especially since I had such a complicated design). Also, I didn’t like some of the restrictions on the robot, such as only being allowed to use two servos, instead of some motors. Using motors might have been more efficient for me, since I geared up the speed of the servo, which was probably geared down from a motor connected to some controller circuit. Also, I would have liked more sensors, such as IR distance sensors. As I mentioned above, I would have like to use surface mount parts, since it would have allowed for a smaller board. In terms of the competition, I didn’t like that there was only one try allowed in the second and final phases of the competition, or that I wasn’t allowed to compete in the second tier. Also, I would have liked to have a blinking IR light at a fixed location on the board, so our robots could orient themselves.
I liked the way my robot turned out, and was actually a bit surprised I could pull of the case design. One of the hard parts in making the case was cutting out the small pieces. It was also tedious to make all of the necessary folds. Another difficult part in the case design was attaching the wings to the body with hinges. Since the space was so small, I could only glue the hinges in; however, they kept coming out. Another part of my robot that I liked was the lighting. The lighting was pretty cool, and was designed to show whether the servo was going forward or backward. The RGB LED was purely for design (since I didn’t realize I wouldn’t be competing in the beauty bot contest). One of the nice things about my circuit was that it used two Li-Ion cells for power. Two main advantages of using Li-Ions were that they had a greater charge density and they could be recharged. This was especially needed because of the power draw from the LED’s and servos.
Some of the difficulties in the locomotion of the robot were: getting it to go fast enough, getting it to go reliably (not wobbling), and getting it to go in a straight line. To get the robot to move faster, I increased the power to the servo and geared it. Increasing power was easy, and will be described below. Gearing the servo was a bit harder, mainly because of the difficulty of attaching a gear to the servo, and getting it to mesh with another gear. I eventually found a way to reliably gear up the speed with Lego’s and a lot of bracing. The Lego’s were nice, because lots of different styles of wheels could be attached. Originally, I had the secondary gear connected to a printer wheel (used to bring paper to the ink head). This didn’t work so well, due to inconsistent traction, so I used Lego wheels, and the traction was improved greatly. To make the robot go straight, I had to constantly adjust the program, which was a pain, since it took a while to download. Luckily, going straight wasn’t too important for my robot, since it was in the obstacle course, not the speed competition or the maze.
There were a few things I thought I did well in the design process. One was construction of the robot, considering the difficulty of design. I also think my method of attaching the LED’s was pretty good. Another good thing about my design was the implementation of gears. While, I may not have done it the most efficient way, I would definitely implement them again, given the chance to build another TJ bot. Another thing I implemented successfully was the front touch sensors (shaped like mandibles). The structure allowed sensitivity if touched from the front, right, or left. The use of magnets to close the wings/lid was nice, because it allowed me to set the robot up quicker (which was important, because I only had three seconds to set it up).
There were also a few things I probably would change, given the chance. One thing was implementation of light sensors, to allow for wall following. This has a noticeable advantage in the final stage of the competition, where the robot could follow the wall until it reached the buzzer. I would also have made the wiring a lot neater. With the current configuration, the messy wiring could easily lead to wires coming off or even some shorting. Also, I would try to use a better gearing system and a 1:4 ratio for that system, which my robot could probably handle, given the increased input power to the servos.
There were a few construction aspects of my robot that could have been improved. As mentioned above, the gearing system could be better, with better bracing and metal or nylon parts. Also, the wheel could be improved in ways such as: larger diameter and even better traction. The gluing and painting of the case could be better (although the look of my robot wasn’t too important). For example, some parts of my wings had large spots of glue that were covered with somewhat matching blue paint. It actually looked a bit messy, but could probably be fixed with better edges and blue glue. Another thing that could be improved is the hinging system, which often broke off. For more accurately estimating distance traveled, a black and white striped disk could be attached to each wheel, coupled with a photo sensor.
There were several things I did to prepare for the contests. The main thing I did was practice on the boards, to find the optimal direction to release my robot (this worked for all levels of tier 1 except the last one, since the board was different in the gym). Before the competitions, I usually checked to make sure my robot would go straight and that the sensors worked properly and clicked at the proper times (so that the robot would turn the correct direction when encountering a wall). I also made sure all of the LED’s worked. Some of the general things I checked on right before a competition was the tightness of the gear parts, electrical connectivity of the wires, and direction the robot was heading (based on my previous tests).
While my “optimal direction” method above worked for most of the competitions, the board in the final competition was different enough that using the optimal direction wouldn’t work. So instead of my usual >100 score (one time, 320) on the practice board, I got a max of about 60. I think my main mistake in the final competition was not taking advantage of the “doublers”. Since the position of the doublers was based on the position of a certain block, I should have programmed my robot to go forward until it touched the block, then go around the block and hit the first doubler. Then, I could have had it go get the other blocks. Another thing I could have changed was optimizing the amount of turning it should do when encountering an obstacle.

Robot Construction Manual

General Robot Construction Steps:
Minimal List of Materials and Tools (Assumes use of a TJ PICAXE board)
· 1) Sheet of PVC, 12” x 12” to form the case of the robot
· 2) Servos to connect to the directly or indirectly (through gears) to the wheels to move the robot
· 1) PICAXE Microcontroller Board for controlling the external electronics and taking in information from external sensors
· 1) Battery for energy to power the robot. A 7-15v source must be used.

· 2) Wheels to connect to the servos and propel the robot forward. The larger the wheels, the greater the speed and the lower the torque (force).
· At least 2) Touch sensors are highly recommended so the robot can take in information from its environment. If more touch sensors are used, more inputs to the microcontroller may be needed.

· Wire and solder to electrically connect components to the microcontroller board.
· [optional] 2) Sets of two gears with around 1:3 ratio, if greater speed is wanted. There must also be two sets of mounting mechanisms for each gear system.
· [optional] A few LED’s for display purposes. May require additional outputs from the microcontroller for the ability to control the LED’s

· [optional] Speakers may be used to add music playing ability, but requires an additional microcontroller output.

· [optional] Other sensors such as light sensors may be used, but require additional inputs and may require an analog-to-digital converter input.

· [optional] Decoration and paint may be used to add more design and artistic aspects to the robot

· [optional] Additional hardware may be used to increase the functionality of the case and other systems, such as the touch sensors.

· 1) Computer for drawing a 2D CAD model of the robot case layout and programming the microcontroller.

· 1) Band saw for cutting the PVC.

· 1) Box knife for facilitating bending of more detailed parts of the case.

· 1) Heating element to bend the plastic without the need for cutting and gluing each piece together.

· Glue: either glue gun or PVC glue to secure the case together and hold parts in. Tape is also useful.

· 1) Soldering iron (with wet sponge, and helping hand, if needed) for soldering parts to wires to the microcontroller board.
· 1) Wire cutter for trimming excess leads when soldering the parts to the microcontroller board.

· 1) Wire strippers for removing insulation from the wires.

· 1) Pliers; helps with placing wires and holding them when stripping insulation off.
· 1) Serial to serial cable for programming the microcontroller.

· 1) PICAXE Programming editor for the microcontroller.

Construction of the Case

1. Come up with a general idea for the shape of the robot. It should be small enough to complete all competitions and large enough to contain the controller circuitry. The design should allow for sensors and wheels, as well as display electronics, such as LED’s.

2. Convert the 3D idea into a 2D layout on Auto CAD or similar program. Make sure to include places to attach the servos, sensors, lights, etc. Then, print it out and trace the outline onto a board of PVC. Make sure the design isn’t too complex, and that pieces don’t overlap. Try to lay the various pieces (if there’s more than one) apart from each other, so a band saw can easily cut the pieces out.
3. Cut each piece out, using a band saw, making sure to follow the associated safety rules. Start by separating the pieces. Then, one at a time, cut the details out of each piece, following the tracing from step 2.
4. For small pieces, cut a grove in the edge that needs to be bent. Do not cut all the way through the plastic. Then, one fold at a time, use the heating element to soften the area that needs to be bent, and bend it to the correct angle. Use templates to sharpen the edge as the plastic cools. Once the plastic is cool, repeat step 4 for the rest of the edges for all of the pieces.

5. Glue pieces and folds together, if necessary, to strengthen the structure.

6. Add decorations and paint to finish the case.

Construction of the Microcontroller Board
1. Gather all components and the PCB needed to construct the board.
2. Lay a few components at a time in their corresponding places and orientations and solder them to the board.

a. To do this, tape can be used to hold the component down, and then the solder can be placed at one of the traces where a lead sticks through. The soldering iron then melts a small amount onto the connection, creating a volcano shape. Then, use the wire cutters to snip off the excess leads (wire above the volcano).

3. Repeat step 2 for all components and leads. For bigger holes, apply more solder until a blob is made.

4. Test the board, making sure the voltage from the output of the regulator is 5v. Place a PICAXE chip in the 18-pin socket and an EEPROM in the 8-pin socket and use a sample program to make sure all parts function properly.

a. To program the board, place one end of the serial-serial cable in the computer serial (COM) port, and the other end in the microcontroller board serial port. Then download a program onto the board.

Construction of the Circuit

1. Gather LED’s, sensors, servos, and other electronic components to be used on the robot. Attach wires to the components (except the servos) and glue them in their corresponding areas of the robot.
2. Determine which components are input devices and which are outputs.

3. Attach a battery clip to the microcontroller board and attach the battery to the clip for power to the circuit.

4. Attach the wires from each component into the correct input/output pins of the microcontroller.

a. For the servos, attach their wires into the servo pins that are shared with output pins 6 and 7. The Red wire should connect to the positive (+) and the dark wire should connect to the negative (-).
b. For the LED’s and other output devices, connect their positive to an output of the microcontroller (0-5) and connect the negative to the ground pin.

c. For the switch sensors (such as touch sensors), attach one wire to a 1kΩ resistor to positive, and the other wire to a microcontroller input to a 10kΩ resistor to ground. For sensor with an analog output, attach their output to an input with analog-to-digital conversion capabilities.

5. Add any other hardware needed for the components to work.

a. For the servos, add the gearing system, if being used, and add wheels.

6. Test the circuit by downloading a program that runs through each output and tests each input.

Creating a Program
1. Figure out a general plan for what the robot should do and what it’s goals are.

2. Refine the plan from step 1, adding exactly what the robot should do for all possible situations.

a. For example, write down what it should do when it’s left sensor is pressed versus its right sensor and figure out when to do what, such as light up certain LED’s or turn on certain servos. Write the plan as a step by step process.

3. Open up PICAXE Programming Editor and convert the refined plan into code.

a. See the PICAXE Basic commands manual for help on some useful programming commands.

b. For example, things such as turn on an LED should be high x, where x is the pin number of the LED. To turn on a servo, use servo x,z, where x is the pin number (6 or 7) and z is the speed (75-225). 75 will turn the servo one way, while 225 turns it the other direction. In the middle of that is the stop value.

c. See Appendix A for a sample program

4. Test the program by pressing the yellow triangle at the top of the program editor. Fix any problems the editor finds, and then download the program onto the PICAXE board.
Testing/ Debugging
1. Place the robot in the testing situation it was designed to work in. Run the robot and observe its actions carefully. Note any discrepancies between the way it functions and the way it was supposed to function, given the circumstances.
2. Change the code according to the discrepancies observed in step 1.

3. Here are some common things that may need to be checked:

· Servos not working: check to make sure all of the wires are connected correctly. Make sure there is a pause after the servo command, so it has time to output the PWM signal, otherwise, the servos won’t receive proper commands.
· Servos going the wrong direction, or one going faster than the other: If a servo is going the wrong direction, change the serve command from either low to high or high to low. If the problem persists, see the first bullet. If one servo goes faster than the other (causing the robot to arc), bring the faster servo’s command closer to the stop value, which is between 75 and 225. Continue this until the servos are at equal speeds.

· The servos are acting strange: Check bullets 1 and 2. Otherwise, make sure the voltage on the battery is above 7v.

· One of the other output devices isn't turning on at the appropriate time: Make sure wires are soldered correctly and the polarity is correct. Make sure all wires are connected to the correct pins. Check the program to make sure there is a command to output a high value on a certain pin and that that pin is getting reached in the program.

· The input pin(s) aren't being sensed: Check to make sure the wires are connected and soldered properly. If there is a delayed reaction in the switch sensing, make sure there are no long pauses causing the program to take a while to check for the value of an input pin. Otherwise, check the program to see that it is checking for the value of a pin and it is doing some action based on that value.

· The input pin(s) are always on: Check the previous bullet. If the problem persists, make sure the switch works and make sure the 10kΩ resistor is connected to ground and the input pin.

· If none of the above suggestions work, make sure the board and PICAXE chips work and make sure the battery is above 7v.

· Note on Gosub...Return: Make sure every subroutine that is called using gosub has a return, and that there are not two returns in a row, unless there is a nested gosub. If there are too many gosubs or returns in a row, the program will have either a stack overflow or a stack underflow, respectively. If a subroutine is left without a return, the program pointer will continue to the next line of code after the subroutine. Make sure that the program uses gosub...return, not goto...return, since this will also create a stack underflow.

· Note on If...Then...Else: Make sure to end If...Then statements with an "end" command. Same applies to If...Then...Else statements.
Uses and Functions of Materials and Components Used in the Robot:

Materials

· PVC plastic sheets

· PVC was the main material used to fabricate the case of the robot. It functions as both structural support for the robot and as an artistic aspect to the robot, in terms of its geometric shape.
· To use it, a diagram from Auto CAD was traced on the PVC, and it was cut out using a band saw while following all the safety rules. Then, it was heated by a heating element, in order to fold the pieces.

· If the pieces weren’t cut correctly, or they weren’t bent to the correct angle, the sides wouldn’t match up. Also, it was a bit hard to bend the smaller pieces.

· To fix the first problem, the piece was reheated and bent as close as possible to the correct position. Then, the pieces could be glued together. To fix the second problem, groves were made in the plastic along the edge to help make the fold more distinct.

· Gears and Wheels

· The gears served the function of increasing the speed of the servo. Then, the secondary gear was connected to the wheels, which propelled the robot forward.

· The primary gear was attached to the servo by tying it down through the holes in the servo wheel. Then, various structures were added so the secondary gear would fit and mesh well with the first gear. All pieces were braced down, and then the wheel was attached to the secondary gear.

· The original wheels weren’t that good because they didn’t have great traction. In addition, they were small, meaning the robot would be slower.

· To fix this, larger wheels were used. The rim of the wheel had a soft rubber, to allow for excellent traction.

Circuitry

· PICAXE Microcontroller Board

· The PICAXE board serves as the “brain” of the robot. It receives signals via its input, processes that data, and outputs something based on what its program tells it to do.

· To create the board, parts were pressed flat against the board, then held down with tape. They were then soldered on, such that the shape of the solder between the leads sticking out and the PCB traces was a volcano.

· One of the main problems with soldering was soldering the power jack to the board, since its pins were so big, and the hole they went through was so large.

· Lots of solder had to be applied at one place at a time, in order to solder the power jack down.

· Sensors

· Sensors take in information from the outside and turn them into electrical signals the microcontroller can read and interpret.

· To connect the sensors, two wires had to be soldered to the sensors (such that they made good mechanical and electrical contact). One wire went to a 1kΩ resister to positive, and the other went to the input to a 10kΩ resistor to negative.

· One of the main problems with the touch sensor was that it required force from a certain direction in order to click.

· To fix this, metal wire was added to the ends of the levers on the switches. The metal was curled towards the front, so they would activate, event when hitting a wall head-on.

· Servos

· The servos functioned as the only form of propulsion for the robot. They were controlled by the microcontroller, and outputted a slow counter-clockwise to clockwise direction, based on the data from the microcontroller.

· Servos were glued to a part of the robot and connected to the gear/wheel system by the method mentioned above in the gears and wheels section. The three-wired cable was attached to the servo outputs on the microcontroller board, such that the red wire was on the positive side, and the dark wire was on the negative side.

· One problem with the servos was that they weren’t fast. Also, their operation was faulty sometimes.

· To fix the first problem, gears were installed at a 1:3 ratio. Also, power from the battery was connected directly to the servo’s + and – pins. The second problem was usually a software issue, caused by a lack of a pause after the servo command. Alternatively, it could be caused by too low of a battery voltage, which could be fixed by replacing (or recharging) the battery.

· Other Output Devices

· Other output devices include LED’s, speakers, etc. The main use of these devices is for the design aspects.

· Wires were soldered onto the leads with good mechanical and electrical connectivity. Wires from the positives of the LED’s were attached to an output on the MCU, while wires from the negative of the LED’s were attached to ground. Since the output of the microcontroller was only about 20mA, it was OK to leave the LED’s without a resistor, although this could possibly damage the PICAXE and lead to excess power consumption.

· One problem with the LED’s was the number of wires needed to connect everything up. The number of wires caused the inside to be cluttered.

· To try and lower the clutter, wires from the negative of one LED were attached to another, so only a couple wires needed to go to ground. However, all of the anode wires were needed, since each one went to a different output.

· Battery

· Li-Ion cells were the source of energy for the robot and served the function of providing energy to power the lights, microcontroller, and servo.

· To avoid the danger of explosion, two cells were connected in series by magnets, instead of being soldered together. A wire from this junction, one from the + and one from the – came out of the pack. The + and – powered the circuit, while charging could be done between – and the junction, and the junction and +.

· One problem arising from the use of Li-Ions was that two in series provided a max of 8.4v, less than the 9v everyone else would use. Another problem came from the difficulty of charging the cells.

· The first problem wasn’t really a problem, since the voltage was regulated to 5v anyway, so I was actually reducing wasted energy by using a lower voltage source. The second problem was sort of solved by connecting a 300mA charger between the + and junction for a few nights, then between the – and the junction for a few nights.

Appendix A – Sample PICAXE program

[image: image1.png]

This is a simple sample PICAXE program, designed to run servos forward until an obstacle is reached, in which case, it goes left or right, based on which sensor was hit first.

Appendix B – My Robot Diagrams and Pictures

My design came from a blue ladybug shown in the picture below. It had the advantage of being both small (for greater agility) and large enough to contain the PICAXE board (when expanded in size).
[image: image2.png]

http://farm1.static.flickr.com/30/38689884_0f30e857fa.jpg
[image: image3.jpg]

A preliminary sketch was made, and then it was adopted to a 3D Google SketchUp model.

Using approximate length and angle measurements, a 2D layout was constructed on Auto CAD. The picture below is about 1/2 the size of the actual version.
[image: image4.jpg]

The following diagrammed pictures are of my final robot after following the designs.

[image: image5.png]

[image: image6.jpg]

[image: image7.jpg]

[image: image8.jpg]

[image: image9.png]E, Fie Edt Smulste PICAXE View Window Help

Dls|ole(@ 8| ¥| vl

& [E|@| vf|

Do

If pinl = 0 and pin2 = 0 Then gosub SFDH
If pinl = 1 Then gosub SLR
If pin2 = 1 Then gosub SRR

1

i1 | Loop

1

13 | SFDH: 'servo forvard high

14 | sexvo 7.225

15 | servo 6,90

16 | pause 50

1

18 | return

i

20 | SLR: 'servo left routine

21 | servo 6.205

22 | servo 7,75

23 | pause 460

24 | servo 6.75

25 | servo 7,75

26 | pause 250

27 | return

2

29 | SRR: 'servo right routine

30 | servo 6.225

31 | servo 7,75

32 | pause 460

33 | servo 6.225

34 | servo 7,225

35 | pause 250

36 | return

3

3

‘label indicates the beginning of the program

'do the following until loop reached
‘test if touch sensor 1 or 2 is not pressed
'if true, call subroutine SFDH

‘test if touch sensor 1 is pressed

'if true, call subroutine SLE

‘test if touch sensor 2 is pressed

'if true. call subroutine SRR

‘loop back to the do comnand

ubroutine to mave robot farward
ave left

‘and right servos forward

‘pause 50 milliseconds

'to allow PUM signal to be sent

‘return to one line after the call comnand

‘subroutine to move robot back. then lsft
‘nove right
‘and left servos backyard
‘continue for 400 milliseconds
‘nove right servo back
‘and left servo foryard

ontinue for 250 milliseconds

‘return to one line after the call comnand

subroutine ta move robot back. then right
nove right

and left servos backvard

continue for 400 milliseconds

nove right servo forward

and left servo back

continue for 250 milliseconds

return to one line after the call comnand

o

PICAYE 18X mode

[PICAXE-18X 4MF [COM 1| CAPS [NUW [115 [6/1/2009 226 AV

E:

nstruc, ers\Albert

1) The RGB flashing light is an indicator that the robot is on, but other than that, serves no functional purpose. Its main purpose is for the design aspect of the challenge. The RGB LED can be seen lit (with the R & G on = Yellow) in the top right image.

2) The rear LED’s are red and turn on whenever their side servo is propelling the robot backwards. The purpose of these lights is to show when the robot hits a wall (since it will back up and those red LED’s will light).

3) The middle LED’s are blue and turn on whenever the side servo is going the correct direction to propel the bot forward. These lights don’t serve much functional purpose, but they are useful for design purposes. The blue lights can be seen lit in the top right image.

4) The body of the bot is made of PVC plastic and bent to conform to the shape of a ladybug. Its purpose is for structure and holding all the parts together.
5) The wheels are rubber LEGO wheels that allow for great traction, speed, and predictability. Together with the gear system and servo, they make the robot move.

6) The legs used to have wheels on them for a purpose, but the newer back wheels were too big, so the front wheel didn’t contact the ground. Therefore, the legs are merely for its look.

7) The white LED serves as a flashlight for the robot, even though it will not need the extra light. The LED might be used in conjunction with the photodiodes eventually, but probably not for this competition.

8) The photodiodes are mainly for design right now, since they are not being used, but eventually, they could be used.

9) The front sensor “whiskers” can sense objects that contact them head-on or slightly at an angle.

10) The front wheel allows the robot to move straight forward, instead of at a slant, which could occur from just a piece of plastic. Also, it lowers friction and allows the bot to move faster.

11) The actual switch is located at the “thorax” of the bug, but the clip extending from it is what normally gets pressed. The extreme leverage allows slight forces to trigger the switch.

12) To fix the problem of peripheral sensing, an attachment was made that stretches across the width of the bot. If pressed, the end will press the switch.

13) This is a photo of the bot in action (the wheel is spinning – causing the blur).

14) A magnet at the bottom of the wing attaches to a magnet at the base (20), allowing both sides of the wing to snap closed.

15) Magnets on either wing shut together, attracting both wings to each other. The wings can be separated, but the magnets help maintain the correct wing shape.

16) Brass hinges replaced tape that was previously used. The brass hinges allow for sturdier support of the wings.

17) Two 3.7v, 2400mAH Li-Ion cells in series provide the power for the robot. Li-Ions were chosen because they have a very high storage density, they are relatively light, they can provide high current output, and they can provide high current for a long time. Technically, the battery could supply 7.4v @ 2.4A for an hour, but the current usage for this application is much less. The fact that their voltage is lower is arbitrary, since the input voltage is regulated to 5v anyway, so the max voltage really needed is around 6.5v.

18) The PICAXE and board controls all the parts and is the brain of the robot, much like my PIC controls my flashlight.

19) The gear connected to the servo is seen through a hole in the PVC. The number of teeth on the gear is 24, where the other gear has eight teeth, and is connected to the back wheel.

20) This magnet attracts the magnet on the wing (14) to snap the wing down.

� EMBED CorelPhotoPaint.Image.9 ���

1

2

3

4

5

6

7

8

9

10

13

14

15

16

17

18

19

20

11

12

_1305318872.bin

